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1. Introduction

A simple and effective way to exploit parallel processors for computationally intensive dis-

crete event simulations is to run multiple independent replications, in parallel, on multiple

processors and to average the results at the end of the runs. We call this the method of parallel

replications. This paper is concerned with using the method of parallel replications for estimating

steady-state performance measures. In particular, we report on the results of queueing network

simulation experiments that compare the statistical properties of several possible estimators that

can be formed using this method. The theoretical asymptotic properties of these estimators were

determined in Glynn and Heidelberger (1989a and 1989b). Both the theory and the experimental

results reported here strongly indicate that a nonstandard (in the context of steady-state simu-

lation), yet easy to 7pply, estimation procedure is required on highly parallel machines. This non-

standard estimator takes the form of a ratio estimator. The experiments also show that use of the

ratio estimator is advantageous even on machines with only a moderate degree of parallelism.

We remark that an alternative approach to parallel processing of simulations is distributed

simulation, in which multiple processors cooperate together to generate a single realization of the

stochastic process being simulated. For an excellent introduction to distributed simulation and a

thorough bibliography on this topic, see Fujimoto (1989). A theoretical comparison of the statis-

tical efficiencies of parallel replications and distributed simulation for estimating steady-state

parameters may be found in Heidelberger (1986).

Intuitively, when using the method of parallel replications on a large number of processors,

one expects to get highly accurate estimates after only a relatively short amount of time.

However, there are some potentially serious statistical problems inherent in this approach, and

careful estimation procedures must be applied in order to obtain estimates with the proper (or

desired) statistical properties. These problems basically arise because any bias effects are magni-

fied on highly parallel machines, i.e., because of the bias, one obtains highly accurate estimates of

the wrong quantity.

In the context of estimating transient performance measures (or steady-state performance

measures in regenerative simulations), these problems have been identified and addressed in

Heidelberger (1988) and Glynn and Heidelberger (1990). These papers show that nonstandard

estimators are required on highly parallel machines. Other issues related to parallel replications

for estimating transient quantities are described in Bhavsar and Isaac (1987).

For estimating steady-state performance measures, the traditional approaches (on a single

processor) are to use either the method of batch means, or independent replications with initial

transient deletion (see, e.g., Law (1977), Law and Carson (1979), Law and Kelton (1982), or



Bratley, Fox and Schrage (1987)). When using replications, it is generally advised to use only "a

few long" replications (say 10 to 20) with deletion to reduce susceptibility to the effects of initial-

ization bias.

With the prospect of parallelism as motivation, Glynn and Heidelberge (1989a and 1989b)

have addressed, from a theoretical point of view, how one should control the number of repl-

cations (processors), the length of each replication, and the length of the initial transient deletion

interval in order to obtain valid central limit theorems for steady-state parameters. Such central

limit theorems can then be used as the basis for confidence interval formation. These papers,

which extend the single processor results of Glynn (1987 and 1990), show that valid confidence

intervals can be obtained even for a very large number of processors P (relative to the replication

length) provided the deletion interval grows appropriately and the proper (nonstandard) ratio esti-

mator is used.

On the other hand, if each processor is run for a prespecified amount of computer time c,

then it was shown that initial transient deletion does not, in fact, remove the dominant term in

the bias expansion (i.e., the term of order l/c) of the traditional (standard) independent repli-

cations estimator, a7 P, c). In this case, the amount of simulated time generated by each processor

is a random variable (rv) and thus the traditional estimator becomes a ratio estimator. The bias

expansion of this estimator reveals two sources of bias of order l/c:

1. "Initialization" bias, i.e., bias essentially due to the simulation not being started in steady-

state conditions.

2. "Ratio" bias, i.e., bias due to the fact that the denominator of the ratio estimator is a rv.

When done appropriately, initial transient deletion effectively removes the initialization bias.

However, initial transient deletion does not remove the ratio bias. The nonstandard estimator,

aR(P, c), corresponds to the classical ratio estimatir which is typically used in sample surveys (see,

e.g., Cochran (1963)) and regenerative simulations (see, e.g., Crane and Iglehart (1975) or Iglehart

(1975)). The initialization bias (of order l/c) in ,R(P, C) is the same as the initialization bias in

a 7{P, c), but the ratio bias in ,R(P, c) is P times smaller than the ratio bias in a7<P, c). Thus

initial transient deletion effectively removes all bias of order 1/c from atR(P, c).

The net effect of this analysis is that, when using the ratio estimator PR(P, c), valid ccnfi-

dence intervals for steady-state parameters can be formed when very highly parallel machines

(large P) are run for a relatively short amount of time (small c/P). In this situation, valid confi-

dence intervals are not obtained when estimating the steady-state parameter by the traditional esti-

mator a 7<P, c). Using a T(P, c), valid confidence intervals are only obtained when c/P is very

large, i.e., when the length of each replication is lacge with respect to the number of processors.
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We emphasize that a 7P, c) and aR(P, c) both make use of exactly the same underlying data: they

merely average these data differently.

The purpose of this paper is to demonstrate, experimentally, that this dramatic difference

between the theoretical asymptotic behaviors of these two estimators is exhibited in sample sizes

that are not unreasonable in practice. In simulations of simple queueing systems, we show that

noticeable effects (increased bias and decreased confidence interval coverage) are present on as few

as 32 to 64 processors. Severe effects are observed on 128 or more processors. Thus, from both a

theoretical and practical viewpoint, the traditional estimator, a7{P, c), should be avoided on.even

moderately sized parallel processors.

The rest of the paper is organized as follows. In Section 2, we summarize the relevant the-

oretical results from Glynn and Heidelberger (1989a and 1989b) and Glynn (1987 and 1990). In

Section 3, we describe the queueing models that we used for experimentation. In Section 4, we

describe the design of the experiments, including point and interval estimation procedures. The

results of the simulation experiments are presented in Section 5. Finally, Section 6 contains a

summary of our findings, a discussion of their relevance to traditional steady-state estimation on

single processor systems, and an indication of related future research topics.

2. Summary of Theoretical Results

The results that we quote from Glynn and Heidelberger (1989a and 1989b) and Glynn (1987

and 1990) were derived und..; reasonable, yet fairly technical assumptions. These basically involve

assumptions corceming the existence of central limit theorems and their associated uniform

integrability (i.e., moment convergence in the central limit theorem), an exponential convergence

rate to the steady-state distribution, and certain boundedness conditions. Since a precise state-

ment of these conditions would be rather tedious (and not particularly illuminating for the present

purposes), we will make the simplifying assumption that the process being simulated is an irreduc-

ible, finite state space, continuous time Markov Chain (CTMC) with state space denoted by E.

Such processes automatically satisfy all of the necessary assumptions.

We let {X(s), s a 0) denote the CTMC. The parameter s denotes simulated time so that

X(s) is the state of the process at simulated time s. There then exists a rv X such that X(s)-X

where - denotes convergence in distribution. We call X the steady-state distribution and we shall

be interested in estimating quantities of the form a = E[flX)] for some function f

There are P processors. Simultaneously an independent simulation of the CTMC is started

on each processor. We let X(s) denote the state of the process at simulated time s on processor i,

i = 1, ... , P. Let T7(c) denote the simulation time on processor i after c units of computer time.

(The discussion in this paper also holds if c is measured in units of "wall clock" time, or for that
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matter, any other way of measuring time.) Let C(s) denote the amount of computer time

required on processor i to obtain s units of simulated time.

There are a variety of ways to set the run length. We will consider two reasonable and

practical approaches. In the first approach, a fixed amount of simulated time, say tp, is generated

on each processor. In this case, the completion time of the simulation experiment is

C(tp) = max{C1(tp), ... , Cp(tp)), which is a rv. Since we can view (C(s), s2! O} as a cumulative

process, it is reasonable to assume that each C(tlp) obeys a central limit theorem, i.e. there exist

finite positive constants A and a, such that

C tp) - tP/ N(O,) (2.1)

where N(O, 1) denotes a normally distributed rv with mean zero and variance one. The parameter

A-I is the long run rate at which computer time is expended per unit of simulated time. Alterna-

tively, , is the long run rate at which simulated time ;s generated per unit of computer time.

Since the completion time is the maximum of iid (independent and identically distributed) rvs that

are approximately normally distributed, the expected completion time is approximately equal to

(tp/A) + o I2tp ln(P) provided tp and P -. oo appropriately. In this expression, (tp,/,) is the

expected completion time of an individual processor and o1 /2tp, In(P) is the additional time until

the last processor finishes. The factor f2I(P) arises as the maximum of P id N(0,1) rvs, which

then gets multiplied by the standard deviation of an individual completion time, ol /.-t,. Notic-

that if a, = 0, then Ci(tp) M tp/A, i.e., computer time is deterministically proportional to simulateu

time and there is no completion time penalty. Since the holding time in a state (in simulated time

units) is a rv and since the amount of work (computer time) to generate a transition may depend

on the state of the system (e.g., the time to put an event on the future event list typically grows

with the length of the list), we view such proportionality as the exception, rather than the rule.

Thus, in general, the completion time penalty grows as j2tp In(P) which is clearly undesirable.

In the second approach, we stop each simulation at exactly the same computer time, c. In

this approach, the completion time of the experiment is deterministic, but the amount of simu-

lated time generated on each processor, Ti(c), is now a rv. Note that T(c) = sup{ t :> 0: C(t) f c),

so that {T(c), c > 0} is the inverse process of {C(t), t > 0}. We will assume that Ctt) can be

represented as an integral, i.e.,

4(t) = x(X(s)) ds where 0 < XU) < 0 for all j e E. (2.2)

4 Experiments with Initial Transient Deletion for Parallel, Replicated Steady-State Simulations



It is well known that such CTMCs satisfy a bivariate central limit theorem:

fo ( c)f(X,{s)) ds , ZL - N(OA) (2.3)

, T ( N(0,A - )3)

where N(O,A) denotes a bivariate normally distributed random vector with means zero and

covariance matrix A. In fact, a slightly stronger version of this central limit theorem is valid (and

required), namely a functional central limit theorem version of Equation 2.3. See Billingsley

(1968) for a discussion of functional central limit theorems. In practice, this is not a restriction.

We next assume that all the data generated in the first Yc(c) units of computer time are

deleted for the purpose of reducing initialization bias. We assume that P(c) is a deterministic

quantity. Define yt(c) -- T(pc(c)) to be the (random) simulated time at which processor i begins

collecting data for steady-state estimation and let

T ,c)

Y(c) - f (X() ds . (2.4)
" ,c)

The length of the interval in which it is assumed that the process is "in steady-state" is then

ri(c) =_ Ti(c) - yi(c). The traditional steady-state simulation estimator of a (assuming we were sim-

ulating on a single processor and associating the index i with an independent replication) is

P

a (P, C) = I Z Yf(c) (2.5)
P 'T (c)

The above estimator is employed in most simulation packages and languages when steady-state

estimation is performed using the method of independent replications with initial transient

deletion. However, the ratio form of a7(P, c) immediately suggests an alternative estimator, which

is more suitable for ratio estimation:

P

L Y(c)

aR(P, c) M = I - (c) (2.6)
,Ac)

P P
where Y(c) = (I1P) X Y(c) and F(c) = (I1P) Y ri(c). Other simulation contexts in which such

ratio estimators have been considered are regenerative simulation (identify Ti(c) and Yi(c) as the



length of the i-th regenerative cycle and an integral over the i-th cycle, respectively) and the

method of batch means (identify T c) and YI(c) as the length of the i-th batch and an integral over

the i-th batch, respectively -see Fox and Glynn (1987)).

We begin by stating bias expansions for a7<P, c) and aR(P, c) when c = cp and we let P and

cp,--+ ci together. We first consider the case when no initial transient deletion is performed, i.e.,

K(cp) yCp) -C. The conditions stated above are sufficient to guarantee the following

asymptotic bias expansions:

bT

E[i7(P,cp,)] = a + ±- + o(l/cp)

(2.7)

E[aR(Pcp)] = a + "- + O(l/cp)
Cp

where

bT=a- A12

(2.8)

bR = a

The expansion for ,,T(P, c) was derived in Glynn (1990) while the expansion for aR(P, c) was

derived in Glynn and Heidelberger (1989b). The precise form of the constant a is given in these

papers. Roughly speaking, we can think of a as "initialization" bias, i.e., bias because

T(c)
E[f (f (Xi(s)) -a)ds 0 . (2.9)

The traditional estimator contains an extra bias term, - A12 /, which can be thought of as ratio

bias, i.e., bias because the denominator of the ratio is a rv.

To see why the bias expansions of ,,1(P, c) and aR(P, c) differ, we give the following brief

heuristic arguments (which are made rigorous in the above mentioned papers). Notice that both

E[ac(P, cp)] and E[aR(P, cp)] can be written as E[A(cp)/B(cp)]. Now let

C(Cp) = (B(cp) - E[B(cp)])/E[B(cp) ] and write

A(cp) A _ (cp) A(cp) (I - t(cp) + (cp)2 ...) (2.10)

B(cp) E[B(cp)] (1 + F(cp)) E[B(cp)]

Taking expectations of Equation 2. 10 yields

6 Experiments with Initial Transient Deletion for Parallel, Replicated Steady-State Simulations



E[A(cp) 1_ E[A(cp)] _Cov[A4(cp),.8(c.)] + .. (.1B(cp) E[B(cp)] E[B(cp)]2

For both a7(P, cp) and aR(P, cp), the initialization bias term a arises from the fact that

E[A(cp)]/E[B(cp)] = E[Y(cp)]/E[,r(cp)] # a. The ratio bias arises from the covariance term in

Equation 2.11. For at (7P, Cp), E[B(cp)] = E[r(cp)] t A cp and

Cov[A(cp),B(cp)] = Cov[Y,{cp), ,rcp)] . cp A A12 by the central limit theorem in Equation 2.3

(and its uniform integrability). Thus the ratio bias for a7{P, Cp) is - A1 21(Acp) as stated. For

4P, cp), the ratio bias is reduced by a factor of P since

Cov[ YXep), "q.Cp) Cp A A12 (.2
Cov[A(cp),B(cp)] = Cov[f(cp),J(cp)] = P - ---- (2.

Combining Equations 2.11, 2.12 and the expression for E[B(cp)] shows that the ratio bias of

aR(P, c ,) is O(1lPcp)( = o(1/cp) as P -, oo).

The effect of the bias expansions of Equation 2.7 is that, without deletion, a(7 P, Cp) and

(R(P, cp) obey the following central limit theorems:

Theorem I

Let {Xj(s), s > 0) be id samples of an irreducible, finite state space CTMC satisfying Equations

2.2 and 2.3. Define a2 = A1 I and let K(Cp) = yi(Cp) = 0. As P - oo,

1. If P/cp-* oo, cp-. oo and bT * O, then FP Ia,7P, cP) - 00I oo

2. If P/cp--.m (0<m<oo)andbT; 0, then PCfP(,r(P,c,) -C )' N(0,, 2 ) + brnl"2 .

3. If P/cp -- 0, then J-p (a7P, cp) - a)-N(0, a2)

Theorem 2

Theorem 1 is also valid for aR(P, cp) with bR replacing br .

Theorems 1 and 2 imply that, without deletion, one must let P/cp -+ 0 in order to obtain

valid confidence intervals for a, i.e., the length of each replication must be large with respect to

the number of replications (processors).

We next consider the case of asymptotically negligible deletion, i.e., KP(cp) -. 00 but

Kp(Cp)/Cp -. 0. In this case, it is shown in Glynz and Heidelberger (1989b) that

E[a7(P, cp)] = a + ±"- + o(l/c , )C1,
(2.13)

L'aR(P,CP)] = a + o(l/Cp)



where

dT - A 12  (2.14)

Equations 2.13 and 2.14 imply that, for aT{P, cp), initial transient deletion is effective in removing

initialization bias, but does not remove ratio bias (unless A 12 = 0 in which case simulated time

and computer time are deterministically proportional). The effect of this bias expansion on the

central limit theorem for aT7 P, cp) is that valid confidence intervals will, again, only be obtained if

P/cp -- 0. On the other hand, initial transient deletion removes all sources of bias of order /cp

from the bias expansion of aR(P, cp). This will permit a valid central limit theorem for aR(P, cp)

even if P/cp -. oo provided the length of the deletion interval does not grow too slowly.

Theorem 3

Let (X(s), s > 0) be iid samples of an irreducible, finite state space CTMC satisfying Equations

2.2 and 2.3. Assume Kp(cp)/cp - 0. As P -oo,

1. IfP/cp-.oo,cp--.cooanddr*O, then Pcp Ia T(P, cp) - a i00

2. If P/cp-. m (O < rn < oo) and dT# O, then P,'-p (a7(P, cp) - a) -N(O, a') + dTrm 2 .

3. If P/cp -. 0, then PeJ p (aT(P, cp) - a)-N(0, a2)

Theorem 4

Let {Xi(s), s > 0) be id samples of an irreducible, finite state space CTMC satisfying Equations

2.2 and 2.3. Assume Kp(Cr)!Cp -- 0. As P -- oo, if either

1. P/cp -, o and Kp(cp)/ ln(P) -- .0, or

2. P/cp - m (0 < m < oo) and Kp(C) --, oo, or

3. Plcp-O

then

VPCP (aR(P, Cp) - a)-N(O,,a) . (2.15)

The ln(P) term in part (1) of Theorem 4 arises because finite state space CTMCs converge

exponentially fast to their steady-state distribution. As indicated earlier, the bias expansions and

Theorems I - 4 are valid under more general conditions. Basically, one needs a functional version

of the central limit theorem in Equation 2.3, uniform integrability of second moments in this joint

central limit theorem, exponential convergence to steady-state, and some sort of regularity condi-

tions on C(t) and {Xj(s),s>01. In Glynn and Heidelberger (1989b), it was assumed that
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(A) = f x,)(s)ds where xe(s) is bounded and that {Xl{s), s > 0) is a bounded regenerative process.

The regenerative assumption is not really as restrictive as it wight seem since the estimation pro-

cedures do not make use of the regenerative structure. It is mainly used as a proof device, and in

addition, many stochastic processes possess a (hidden) regenerative structure (see, e.g., Glynn

(1989)). We further believe the result to be true for more general cumulative processes

(Ct), t > 0) where, e.g., Ci(t) is discontinuous.

3. Queueing Models Used for Experimentation

In this section, we describe four queueing models that we used for determining, exper-

imentally, the behavior of a7 (P, c) and aR(P, c). These represent simplified versions of models

(with analytically tractable solutions) that often arise in simulations of computer or communi-

cations systems. We ran experiments on the waiting time process in an M/M/Il queue and on

three CTMCs: the queue length processes in an M/M/1 queue with feedback, a open Jackson

network and a closed product form network (see, e.g., Kleinrock (1975)).

For the M/M/ I waiting time simulations, we let 0 be the arrival rate, g be the service rate,

and p = ,/ be the traffic intensity. Let W, be the waiting time of the n-th customer. For p < 1,

W,-= W. The performance measure of interest is a= E[W] = p/[M(1 -p)].

For the M/M/ 1 queue with feedback, we let 4k denote the arrival rate, A the service rate and

p the feedback probability. The expected number of visits a customer makes to the queue is

l/(I - p) and the traffic intensity is p = 0/[#t(1 - p)]. We let Q(s) denote the queue length at

(simulated) time s, including the customer in service. Then Q(s)=Q as s -. o0 provided p < 1.0.

The output performance measure of interest is the steady-state mean queue length,

a = E[Q] = p/(l - p). We set 4, = 1, p = 20, and p =0.9, so that p = 0.50 and a = 1.0. We ran

experiments with two sets of initial conditions: Q(0) = 0 and Q(0) = 5.

A diagram of the open Jackson network is shown in Figure 1. This network is sometimes

called an open central server model (see Buzen (1973)) with server 0 representing a CPU (central

processing unit), and servers 1 to 4 representing I/O devices. There is a single type of job. Jobs

arrive to the network (at the CPU) according to a Poisson process with rate 4,. All servers operate

using the FCFS service discipline and the service times of jobs at server i are id exponentially

distributed rvs with mean si. When a job leaves the CPU, it goes to I/O device i with probability

p1 (I < i ! 4), and when a job leaves an I/O device, it goes to the CPU with probability PO and

exits the system with probability (1 - Po). Let Qi(s) denote the queue length at server i at time s

(including the customer in service) and let p, denote the traffic intensity at server i. Provided

pi < 1, then (Qo(s),..... Q4(s))=(Q 0 .... Q4 ) as s -. oo. Under the above assumptions, the steady-

state distribution of (Q0 ., Q4) has a product form, and in particular E[Q] = pil(l - pi). The

9



output performance measure of interest is a = E[Q0 ]. We set k = 1.0, p = 0.75, Pi = 0.25 for

ia: l, so = 0 .187 5, and s =0.50 for i 2t. With these parameters, po= 0. 7 5 , p= 0.50 for i> I,

a = E[Q0 ] = 3.00, and E[Q1] = 1.0 for i > 1. This model was simulated with initial conditions

Q,(O) = 0 for all i.

The closed, product form queueing network model is shown in Figure 2. This model is

sometimes called a closed central server model. Again server 0 represents a CPU and servers I to

4 represent 1/0 devices. There are a fixed number of jobs N circulating in the network. As in the

open model, the service discipline is FCFS at all servers and we assume lid exponentially distrib-

uted service times with mean s, at server i. When a job leaves the CPU, it goes to I/O device i

with probability pi and when a job leaves an I/O device it goes back to the CPU. Let Q1(s)

denote the queue length at server i at time s (including the customer in service) and let pi denote

the steady-state utilization of server i. Then (Qo(s), ... , Q.(s))=(Q o, ... , Q4) as s -* 0. The per-

formance measure of interest is a = E[Q]. We set N= 10, pi = 0.3 for 1 _< i:5 3, p4 = 0.1, so = 1.0,

s= 2.0 for 1 ! i_ 3, and s4 = 11.0. With these parameters, p0 = 0.82, p. = 0.49 for 1 i !53,

p4 = 0.90, a = E[Q0] = 3.06, E[Q1] = 0.92 for 1 _ i < 3, and Q = 4.17. This model was simulated

with initial conditions Qo(0) = 6 and Qi(O) = 1 for i >_ 1.

Because we did not have convenient access to a very highly parallel machine, all exper-

iments were run on a single processor. The effect of running parallel replications on multiple

processors with a computer time stopping constraint was simulated as follows. For the queue

length processes, we assumed that each event (external arrival or service completion) took one

unit of computer time to process. Thus Ci(t) is the number of events completed at simulated time

t (on replication t) and TI(c) is the amount of simulated time generated after processing c events.

For the M/M/l waiting time simulations, we let Cl(t) be the arrival time of customer

number t and Ti(c) be the number of customers that arrive in the interval (0,c). In this example,

the integrals in Equations 2.3 and 2.4 get replaced by sums. Using these definitions for C(t) and
n-|

Ti(c) allows the ratio bias term dr to be calculated analytically, as follows. Let W = X Wkln be
n k -0

the average waiting time of the first n customers and let A, = Y Akin be the average interarrival
k, I

time of the first n customers. Note that A, = C(n)/n. Since T1(n)/n - 4 (the arrival rate), in this

example we have A =. We also have

- a, A -- ') N(O,B) (3.1)

for some covanance matrix B. By Theorem 5 of Glynn and Heidelberger (1989b), B and A (the

covariance matrix in Equation 2.3) are related by AII = B11 /A, A12 = - ABI 2, and A22 = A3 B22 .

Thus by Equation 14, dT= BI 2 ( = - A12/A). All the terms of B can be explicitly calculated (we
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set u= 1): B1 1 = p[2+ 5p- 4p2 + p 3]/(i - p)4 (see, e.g., Blu:nqvist (1967) or, more recently,

NA ,itt (1Q89)), B2 2 = Var[Ak] = 1/I2 , and, by using regenerative process theory (see, e.g., Crane

and Iglehrt (1975))

B12  - Cov[ (Y - Ni), (i - -I N) (3.2)E[N1]

where Y, is the sum of the waiting times in the i-th regenerative cycle, tj is the sum of the interar-

rival times in the i-th cycle and Nj is the number of arrivals in the i-th cycle. Now

E[Nj = 1/(1 - p), while the covariance term in Equation 3.2 can be calculated from results con-

tained in Lavenberg, Moeller and Sauer (1977) (the research report version of Lavenberg, MoeUer

and Sauer (1979)). (This covariance term arises in the context of control variables for simulation

variance reduction.) Specifically, for M/G/ I queues

Cov[(Y I-aN,) , (ti - NIA)] - b2/[2(1 _p)3] where b2 is the second moment of the service

tunes. Since, for M/M/I (with a = 1) b2 = 2, Equation 3.2 reduces to dT= B12 = - 1/(1 - p)2

The effect of ratio bias on confidence interval coverage can now be calculated analytically.

Let (F(x) - P(,V(0, 1) x) and define z612 by (I)(z612) = I - 6j2. From part 2 of Theorem 3, if

P/ cp = m, and # = rtntm-/AII , then

P( "cp 1 .7 P, c p) - A 1  < z 61 2) ;: P{IN(0, )+ i (3z6 /2

= (D(z6 12 -fl) - D(-z5/2-

Thus for any given p, P, and cp, the actual coverage of presumed 100 x (1 - 6)% confidence

intervals can be predicted. In Section 5, we will compare the predicted coverage with the actual

coverage observed in simulation experiments. Note that by using the heavy traffic approximation

B, I 4 p/(l - p)4 (see Whitt (1989)) we obtain fl ; -0.51-re-. This approximation also works

well for moderate values of p. Thus for given P and cp, we expect the loss in coverage due to

ratio bias to be approximately independent of the traffic intensity (provided p is not too small and

P and cp are large enough that the central limit theorem is valid). This behavior will be observed

in Section 5.

4. Design of the Simulation Experiments

In this section we describe how the simulation experiments were performed. As mentioned

earlier, the effect of running parallel replications on multiple processors with a computer time

stopping constraint was simulated on a single processor. For the various models, and different

values of P, ( and K(C), we were interested in estimating the mean, variance and confidence

I 

I 

I



interval coverage of aT(P, c) and aR(P, c). We built a simple queueing network simulator suitable

for these purposes. (We used the combined generator described in L'Ecuyer (1988) as a source of

random numbers.) To esimate these quantities for given valves of P, c, aid K(c), M "super repli-

cations" were performed where each super replication consisted of P replications, each of length c

and having truncation interval K(c). Thus for super replication j (1 j 5 M) samples a7(P,cj) and

aR(P,C,J) of aT(P,c) and aR(P,c), respectively, were obtained (according to Equations 2.5 and 2.6).
M

E[aT(P,c)] and ElaR(P,c)] were estimated by i 7T(P,c) F a7TP,cj)/M and
M i=lI

3R(P,c) Y aR(PcJ)M, respectively. The sample standard deviations, ST(P,c) and SR(P,c) of
i= I

7(P,c) and 3R(P,c), respectively, were computed in the usual way, e.g.

2 Al 2SY(P,c) = I (aT.(P,c,}A - T(P,c)) /[M(M - 1)].
t=1

On each super replication we also obtained asymptotic standard deviation estimates

a7 (P,c,f) and aR(P.c,I) for aT(P, c) and aR(P, c), respectively. These were estimated as follows.

Lt Y(cf) and Ti(c,j) be the samples of Yj(c) and Ti(C) obtained on the j-th super replication.

Then

p- Yi(C' J) -T(P,c,A ),= 2

A2 z ( )
a=.(PC, P- 1 (4.1)

^2

Computation of OR(P,c,f) is analogous to variance estimation in regenerative simulation:

P

P
A2 

(42cOR(P,C,f) .1 2 .(4.2)

1 -ri(c, P,

i-rom these point and variance estimates, presumed 100 x (1 - 6)% confidence intervals for a can

be formed as follows. Using the traditional estimator the confidence interval is
a2 .(P,c,j) ± tdI2(P - l) TP,c,j)/j" where t612(P- 1) is defined by

I - 6/2 = P{Tp - : t6 12(P - 1)) and Tp - has a Student's t distribution with (P - 1) degrees of

freedom. Using the classical ratio estimator the confidence interval is

a((Pc,j) ± Z6/ 2 AR(P,C,J)I/T-. For a given estimator, we define its coverage to be the fraction of

these confidence intervals that actually contain a. If valid confidence intervals are being formed

for a, then, by definition the coverage should converge to (1-6) as M + 0. In all cases we set

6 = 0. 1 corresponding to 90% confidence intervals.
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The simulator was organized in such a way that statistics could be collected for multiple

values of P, c and K(c) from tht same set of runs. Thus the data generated for a particula- model

are correlated. We took values of P to be powers of two, ranging from P = 8 to P = 512 for the

CTMCs and P = 128 to P = 1024 for the M/M/ 1 waiting time simulations. Eac. super repli-

cation for P processors also comprised 2 super replications for P/2 processors, 4 super replications

for P14 processors, etc. We used 200 super replications for the largest values of P in each case.

Thus, e.g., 12,800 super replications of the CTMCs were obtained fcr P = S. These sample sizes

were generally large enough so that very accurate point estimates were obtained.

5. Experimental Results

The first set of experiments are for the M/M/l waiting times. The purpuse of these exper-

iments is to compare the analytic results of Section 3 to aztual simulation results. To isolate just

the effect of the ratio bias, these simulations were started in the steady-state distribution. We

simulated until (simulated) time c = 1,000. By deleting customers arriving before times K(c) = 100,

250 and 500, we obtained runs of effective lengths c - Pc(c) = 900, 750 and 500, respectively. We

simulated at p = 0.50 and p = 0.75.

The results of these experiments are listed in Table 1. Table 1 lists the predicted coverages

for a7(P, c) as calculated by Equation 3.3 (using t. Tective run length for c in that equation), as

well as the actual coverages for a7(P, c) and CR(P, c) observed in the simulations. Table 1 indi-

cates generally excellent agreement between the predictions and the experiments. Notice that, for

given P and K(c), the predicted and actual coverage for a7(P, c) is quite insensitive to the value of

p, as explained in Section 3. In addition, for fixed K(c), as P increases the coverage for aT(P, c)

decreases. This is in agreement with part 2 of Theorem 3 and is explained by the fact that as P

increases, increasingly accurate estimates of (the biased) E[a7 P, c)] are obtained. This loss in

coverage is greatest for the largest value of K(c) since that corresponds to the smallest effective run

length. On the other hand, the coverage for aR(P, c) stays close to its nominal value of 0.90.

Figures 3 to 5 plot results from simulations of the M/M/1 queue v di feedback. Figure 3

plots E7 (P,c) and FR(P,c) as a function of K(C) for c = 1000 events, P = 512, and two different

initial queue lengths. Actually, when Q(0) = 0, a7{P, c) appears almost unbiased without trun-

cation (K(c) = 0), but 37(P,c) increases above the .steady sta,e value of a = 1.0 as K(C) increases.

In this case, the initialization bias and ratio bias are of opposite signs and, in effect, approximately

cancel each other out when c(c) = 0. When Q(0) = 5, -T<P,c) decreases as K(c) increases, but,

again, does not come close to a. For K(c) = 500 the values of R7{P,c) are very nearly the same for

both Q(0) = 0 and Q(0) = 5, but are about 8% above the steady-state value. On the other hand,

3R(P,c) approaches a as K(c) increases for both Q(0) = 0 and Q(0) = 5. These point estimates are
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very accurate. For example, when Q(0) = 0 and K(c) = 500, &7(512,c) = 1.084, S7 (512,c) = 0.002,

aR(512,c) = 1.002 and SR( 5 12 ,c) = 0.002.

Figure 4 plots the coverages for these estimators (without deletion) as a function of P.

Because, by coincidence, E[aT(P, c)],-a when Q(0)= 0 and Pc(c) = 0, the coverage for a7T(P, c)

remains at or near the nominal value of 0.90. However, the coverage for aT7 P, c) decreases (to

zero) as P increases when Q(0) = 5 because of the stronger initialization bias. Similarly, because

of initialization bias, the coverage for ,R(P, c) is seriously degraded for both Q(0) = 0 and

Q(0) = 5.

Figure 5 shows the coverages when K(c) = 250. With this value of Pc(c), the initialization bias

is essentially eliminated, although ratio bias is still present: for example, when Q(0) = 5,

3R(51 2 ,c) = 1.004 compared to a = 1.0 while 37(512,c) = 1.060. Because of the ratio bias, the cov-

erage for aT(P, c) decreases from around 0.90 to less than 0.20 as P increases from 8 to 512 for

both initial conditions. Significant coverage loss begins to be observed in the range from P = 32

to P = 64. On the other hand, the coverage for aR(P, c) starts out slightly below 0.90 for P = 8

and then rapidly approaches 0.90 as P increases. The low coverage when P = 8 is due both to a

less robust variance estimate as well as to the use of a normal multiplier, rather than a

t-multiplier, in the confidence interval. For example, when Q(0) = 0 and a t-multiplier with 7

degrees of freedom is used instead of the normal multiplier, the coverage for aR(8,P) increases

from 0.820 to 0.864.

Figures 6 and 7 display results of simulating the open central server model. This network

was simulated for c - 2500 events. Figure 6 plots "TP,c) and "R(P,c) as a function of K(c) for

P = 8, 64 and 512. (Because of the organization of the simulator's data collection facilities,

5T(P,c) is independent of P.) Initialization bias is essentially eliminated by K(c) = 1000, but signif-

icant ratio bias is still evident in 3T(P,c). Note also that there are only slight differences between

5R( 8 ,C), 3R(64,c) and aR(51 2 ,c). Because of the initialization bias, without deletion, the coverage

for both a7(P, c) and IR(P, c) are well below the 0.90 level: the coverage for iT764,c) is 0.627

while the coverage for aR(6 4 ,c) is 0.457. Note that when ic(c) = 250, a7(P, c) is, by chance, almost

unbiased. Thus, with this amount of deletion, the coverage for a7TP, c) will be (approximately)

correct, but for the wrong reason. For example, a7T512,c) has coverage 0.91 while ,,R( 512 ,c) has

coverage of only 0.60.

Figure 7 plots the coverages for a 7<P, c) and aR(P, c) as a function of P when initialization

bias is essentially removed (c(c) = 1000). Again, the coverage for a7(P, c) decreases as P increases,

while the coverage for aR(P, c) increases to and then remains at or near the nominal 0.90 level.

Figure 8 displays a similar pattern for simulations of the closed central server model. This

figure plots coverage results when c = 2000 and K(c) = 500. With these parameters, initialization
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bias is removed but ratio bias is still present. The steady-state value beien estimated is a = 3.057,

and -R(51 2 ,c) = 3.056 (SR( 5 12,c) = 0.002) while T(512,c) = 3.111 (S7T512,c) = 0.002).

As has been indicated several times above, for given values of P, c and K(c), the values of

S7 (P,c) and SR(P,c) have been very nearly the same. This has been observed throughout our

experiments. This is explained by the fact that, even with ratio bias still present, a7TP, c) and

aR(P, c) both obey central limit theorems with the same asymptotic standard deviation (see Theo-

rems 3 and 4).

6. Summary and Conclusions

This paper has considered the problem of estimating steady-state parameters on multiple

processors via the method of parallel replications. While the method is conceptually straightfor-

ward to apply, statistical considerations point to the need for using an alternative steady-state esti-

mation procedure. This need arises because the traditional estimator, a7 (P, c), contains two

sources of bias having the same order of magnitude: initialization bias and ratio bias. While

appropriate deletion of an initial portion of each simulation effectively removes initialization bias,

it does not affect the ratio bias. When using a large number processors, this residual ratio bias

results in a biased estimate and corresponding loss in confidence interval coverage.

The alternative estimator, aR(P, c), corresponds to the classical ratio estimator that is com-

morly used in regenerative simulation. Its ratio bias is order P times smaller than its initialization

bias. Thus appropriate deletion is effective in removing the major source of bias. The net effect

is that by using CfR(P, c) rather than aT(P, c) allows one to either:

1. use many more processors for a given amount of computing time per processor, or

2. make shorter runs for a given number of processors.

This paper examined these issues empirically via simulations of a variety of queueing

systems. Our experiments confirm the theoretical results, and indicate that the ratio bias can

become a problem even on moderately sized parallel processors with, say*, 32 to 64 processors.

The results of this paper also have some applicability to the standard single processor

method of independent replications. In this method, the replication length is often determined by

either the total number of events, a simulated time limit, a computer time limit, or the number of

events of a particular type such as the number of departures from a queue. (Sometimes a combi-

nation of these limits is used.) When estimating many parameters in a queueing network, there

will always be some parameters that are estimated on a different time scale than that used to

determine the replication length. Thus the denominator of some parameter estimates will be

random, resulting in ratio bias. For example, if simulated time is used to control the replication

is



length, then response time estimates will have a random denominator (the number of customers

departing from the queue). On the other band, if an event count is used to control the replication

length, then queue length estimates will have a random denominator (the simulated time). Thus

ratio bias could be a concLrn, even on a single processor. However, there is usually little moti-

vation to run a very large number of short replications on a single processor, since either batch

means or a running few long replications will be less sensitive to initialization bias. Never-the-

less, the issue of ratio bias should be kept in mind. In fact, for a small number of replications, the

ratio form of aR(P, c) suggests the use of jackknifimg (see Miller (1974)) for both (ratio) bias

reduction and for robust variance estimation. However, the properties and validity of jackknifing

in this situation have not yet been established, and remain as open problems for research.

In addition, if the replication length is determined within a sequential procedure (see, e.g.,

Law and Kelton (1982)), then the denominator of the estimates will typically be random resulting

in possible ratio bias. This will also be true if the length of the truncation interval is determined

by statistical tests of the simulation output (see, e.g., Schruben (1982)). The effect of ratio bias in

these situations also has yet to be analyzed.
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Figure 3. Estuimated Mean Queue Length in M/M/ 1 Queue With Feedback
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Figure 4: Estimated 90%/ Coverage in M/M/ I Queue With Feedback (Without Deletion)
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Figure 6: Estimated Mean Queue Length in Open Central Server Model
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Open Centrul Server Model
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Figure 7: Estimated 90% Coverage in Open Central Server Model
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Figure 8: Estimated 90 Coverage in Closed Central Server Model
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Table I

Predicted and Actual 90% Confidence Interval Coverages
in M/M/1 Queue Waiting Time Simulations with c = 1000

p = 0 .5  p = 0 .7 5

c- K(C) P Predicted Actual Actual Predicted Actual Actual
at7(P, c) a7(P, c) aR(P, c) a7(P, c) atOP, c) aR(Y, c)

500 128 0.888 0.874 0.894 0.889 0.871 0.898
256 0.876 0.856 0.892 0.878 0.862 0.908
512 0.852 0.848 0.909 0.856 0.875 0.912
1024 0.806 0.795 0.930 0.813 0.850 0.920

750 128 0.892 0.888 0.903 0.893 0.885 0.898
256 0.884 0.876 0.894 0.885 0.882 0.902
512 0.868 0.870 0.900 0.871 0.870 0.912
1024 0.837 0.845 0.915 0.842 0.865 0.950

900 128 0.893 0.886 0.900 0.894 0.882 0.898
256 0.887 0.881 0.880 0.888 0.876 0.896
512 0.874 0.880 0.900 0.876 0.865 0.912
1024 0.847 0.855 0.930 0.851 0.870 0.920
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